Effect of Precompression on Thickness of Pipe During Bending

Author:

Kale A. V.1,Thorat H. T.2

Affiliation:

1. Department of Mechanical Engineering, Yashwantrao Chavan College of Engineering, Hingna Road, Nagpur-441110, India

2. Department of Mechanical Engineering, Visvesaraya National Institute of Technology, Nagpur-440011, India

Abstract

Straight pipes with a circular cross section are processed into smooth bends by various pipe bending techniques. After bending, the initial circular cross section is deformed with thickness change. These changes from ideal are normally referred to as “ovality” and “thinning.” Their influence on the subsequent behavior of curved pipes is not yet fully understood. The aim of this paper is to present a factual method to reduce thinning of the wall thickness of pipe during bending. A new mechanism is developed for bending of pipes. This mechanism has a provision of precompression (radial squeeze) of the pipe along the directrix of maximum deformation during bending. This is achieved by clamping the pipe using two parallel plates from top and bottom. In fact, the pipe is wrapped using two rollers—one from inside and one from outside in the horizontal plane—and two plates parallel to the horizontal plane—one from the top and one from the bottom. Experimentation is carried out on this mechanism, and thicknesses are measured at the grid points along the length of the pipe. From the experimental values of thicknesses on the tension and compression sides, dimensionless variations in wall thickness of various groups of pipes are computed for different precompression values. In order to represent the thickness at any point, a mathematical equation is derived. Analytical values of thickness variations on tension and compression sides are computed using this equation. Experimental and analytical results are compared, and its methodical approach is presented in this paper. Results show that precompression reduces thickness variation of the pipe after bending.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference12 articles.

1. Tube, Pipe and Bar Bending;Alexander

2. Uber die Formanderung Dunnwandiger Rohre, insbesondere federnder Ausgleichsrohre;Karman;Z. Ver. Dtsch. Ing.

3. Elastic Properties of Curved Tubes;Vigness;Trans. ASME

4. Etude de la deformation et des tensions internes des tuyaux a linge moyenne plane, sans pression interne;Barthelemy;Bulletin of the Association of Technical Maritime Aeronaut

5. Bending of Pipe Bends With Elliptic Cross-Section;Findley;Weld. Res. Counc. Bull.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3