Affiliation:
1. Department of Petroleum Engineering, University of Houston, Houston, TX 77204
2. Department of Petroleum Engineering, University of Houston, Houston, TX 77204 e-mail:
Abstract
Extra heavy crude oil (bitumen) reserves represent a significant part of the energy resources found all over the world. In Canada, the “oil sands” deposits are typically unconsolidated, water-wet media where current methods of recovery, such as open pit mining, steam-assisted gravity drainage (SAGD), vapor extraction, cold heavy oil production with sand, etc., are controversial due to adverse effect on environment. Chemical enhanced oil recovery (cEOR) techniques have been applied as alternatives but have limited success and contradictory results. An alternative method is described in this paper, which relies on the application of single-phase microemulsion to achieve extremely high solubilization. The produced microemulsion will be less viscous than oil, eliminating the need for solvent addition. Produced microemulsion can be separated to recover surfactant for re-injection. The work in this paper discusses phase behavior experiments and a flow experiment to prove the concept that single-phase microemulsions could be used to recover extra-heavy oils. Phase behavior experiments showed that the mixture of alcohol propoxysulfate, sodium dioctyl sulfosuccinate, sodium carbonate, and tri-ethylene glycol monobutyl ether results in single-phase microemulsion with extra-heavy crude. A flow experiment conducted with the same composition produced only single-phase microemulsion leading to 74% recovery of the original oil in place from a synthetic oil sand. Future experiments will be focused on optimizing the formulation and testing with actual oil sands samples.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献