Preliminary Calculations on Post Combustion Carbon Capture From Gas Turbines With Flue Gas Recycle

Author:

Akram Muhammad1,Khandelwal Bhupendra1,Blakey Simon1,Wilson Christopher W.1

Affiliation:

1. The University of Sheffield, Sheffield, UK

Abstract

Carbon capture is getting increased attention recently due to the fact that it seems to be the only answer to decrease emissions. Gas turbines exhaust have 3–5 % concentration of CO2 which is very low to be captured by an amine carbon capture plant effectively. The amine based plants are most effective at around 10 – 15% CO2 in the flue gas. In order to increase the concentration of CO2 in the exhaust of the gas turbine, part of the exhaust gas needs to be recycled back to the air inlet. On reaching the concentration of CO2 around 10% it can be fed to the amine capture plant for effective carbon capture. A 100 kWe (plus 150 kW hot water) CHP gas turbine Turbec T100 is installed at the Low Carbon Combustion Centre of the University of Sheffield. The turbine set up will be modified to make it CO2 capture ready. The exhaust gases obtained will be piped to amine capture plant for testing capture efficiency. Preliminary calculations have been done and presented in this paper. The thermodynamic properties of CO2 are different from nitrogen and will have an effect on compressor, combustor and turbine performance. Preliminary calculations of recycle ratios and other performance based parameters have been presented in this paper. This paper also covers the aspects of turbine set up machinery which needs to be modified and what kind of modifications may be needed.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3