Gas Turbine Engine Health Management: Past, Present and Future Trends

Author:

Volponi Allan J.1

Affiliation:

1. Pratt & Whitney, East Hartford, CT

Abstract

Engine diagnostic practices are as old as the gas turbine itself. Monitoring and analysis methods have progressed in sophistication over the past 6 decades as the gas turbine evolved in form and complexity. While much of what will be presented here may equally apply to both stationary power plants and aero-engines, the emphasis will be on aero propulsion. Beginning with primarily empirical methods centering around monitoring the mechanical integrity of the machine, the evolution of engine diagnostics has benefited from advances in sensing, electronic monitoring devices, increased fidelity in engine modeling and analytical methods. The primary motivation in this development is, not surprisingly, cost. The ever increasing cost of fuel, engine prices, spare parts, maintenance and overhaul, all contribute to the cost of an engine over its entire life cycle. Diagnostics can be viewed as a means to mitigate risk in decisions that impact operational integrity. This can have a profound impact on safety, such as In-Flight Shut Downs (IFSD) for aero applications, (outages for land based applications) and economic impact caused by Unscheduled Engine Removals (UERs), part life, maintenance and overhaul and the overall logistics of maintaining an aircraft fleet or power generation plants. This paper will review some of the methods used in the preceding decades to address these issues, their evolution to current practices and some future trends. While several different monitoring and diagnostic systems will be addressed, the emphasis in this paper will be centered on those dealing with the aero-thermodynamic performance of the engine.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical Redundancy for Variable Cycle Engine Based on Variable-Weights-Biases Neural Network;Aerospace;2023-04-29

2. Performance Prognostics of Gas Turbines Using Nonlinear Filter;Lecture Notes in Mechanical Engineering;2022-10-04

3. Aero-engine Performance Evaluation Based on Gas Path Parameters and Operating Characteristics;2022 Prognostics and Health Management Conference (PHM-2022 London);2022-05

4. An enhanced aircraft engine gas path diagnostic method based on upper and lower singleton type-2 fuzzy logic system;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2019-01-12

5. Model Based Performance Analysis;Propulsion and Power;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3