Evaluation of Massively-Parallel Spectral Element Algorithm for LES of Film-Cooling

Author:

Duggleby Andrew1,Camp Josh L.2,Laskowski Greg3

Affiliation:

1. Texas A&M University, College Station, TX

2. Exosent Engineering, LLC, College Station, TX

3. GE Aviation, Lynn, MA

Abstract

A blind Large-Eddy Simulation (LES) of film-cooling heat transfer is performed on a canonical cylindrical cooling hole geometry using a massively-parallel, geometrically-flexible, open-source spectral element solver NEK5000. The simulation is for a blowing-ratio of 1.0, density-ratio of 1.5, and Reynolds-number Reθ = 4,300 based on boundary layer momentum thickness and ReD = 32,000 based on hole diameter. A low-Mach ideal gas formulation is used to match the density ratio. A spectral-damping LES subgrid model is used which does not restrict time-stepping, allowing CFL numbers of 5–10 through characteristics time-integration. The numerical mesh resolves the boundary layer and coarsens to acceptable LES sizing in the free stream, resulting in 88 million grid points (410,464 elements at 5th order polynomial). For this blowing ratio, the coolant hole Mach number is too large for the low-Mach formulation (> 0.3). This results in faster hole velocities as opposed to fluid compression, effectively changing the momentum ratio leading to coolant lift-off as compared to experiment. The film-cooling effectiveness along centerline and spanwise locations of x/D = 2 and 8 are lower than experiment. Ideal parallel scaling is shown up to 256 processors and estimated to continue at ideal scaling to 2048 processors.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3