Statistical Methods for a Stochastic Analysis of the Secondary Air System of a Jet Engine Low Pressure Turbine

Author:

Antinori Giulia1,Muller Yannick2,Duddeck Fabian1,Fischersworring-Bunk Andreas2

Affiliation:

1. Technische Universität München, Munich, Germany

2. MTU-Aero Engines, Munich, Germany

Abstract

In this paper several stochastic methods are evaluated with respect to their applicability for the analysis of fluid networks. The methods are applied for the analysis of a 1D flow model of the Secondary Air System (SAS) of a three stages low pressure turbine (LPT) of a jet engine. The stochastic analysis is comprised of a sensitivity analysis followed by an uncertainty analysis. The sensitivity analysis is performed to gain a better understanding of the SAS physics and robustness, to identify the important variables and to reduce the number of parameters involved in the simulations for the uncertainty analysis. The uncertainty analysis, using probability distributions derived from the manufacturing process, allows to determine the effect of the input uncertainties on responses such as pressures, fluid temperatures and mass flow rates. A review of the most common and relevant sampling methods is performed. A comparison of the respective computational cost and of the sample points distribution is proposed with the aim of finding the most suited method. The study shows that some of the sampling methods can not be recommended since they produce spurious correlations between independent input variables. With regards to the sensitivity analysis, many literature sources state that the Pearson correlation method is only valid for linear models when assessing the importance of input variables. As the SAS is highly non-linear, non-parametric variance based methods are introduced here to make up for the limitations of the correlation method. Following the results of the study, it is recommended to combine the sampling method with a non-parametric variance based method. Thus, the main effects as well as all the interactions among variables are captured.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3