CFD Investigation of Vane Nozzle and Impeller Design for HPT Blade Cooling Air Delivery System

Author:

Tian Shuqing1,Zhang Qin1,Liu Hui1

Affiliation:

1. AVIC Commercial Aircraft Engine Co., Ltd., Shanghai, China

Abstract

In the design of a HPT blade cooling air delivery system, sufficient supply pressure and lower relative total temperature are required to guarantee HPT blades working properly in the high temperature environment. The pre-swirl vane nozzles and the radial impellers are used in the delivery system with lower radial location of pre-swirl nozzle to achieve the requirements. In this paper, CFD analysis is utilized for designing the vane nozzles and the radial impellers. Two HPT blade cooling air delivery systems were explored. The baseline is a system without impellers, and the alternative is a system with impellers. The results show that the impeller contributes to the delivery system by pumping effectiveness thus decreasing the extracted air pressure. The parity of swirl ratio between the flow and the broach slots is a main factor that decreases the system pressure loss, which can be improved by the radial impellers. The well-designed contoured radial-impeller vane with 30° front angle and 20° trailing angle is recommended in the blade cooling air delivery system design because of its good aerodynamic performance and closely radial outflow. The cascade vane nozzle with more than 70° angle turn is recommended in the pre-swirl nozzle design. It has a good aerodynamic performance with discharge coefficient greater than 0.99 and deviation angle less than 1.3°. The well-designed radial impeller pays big contributions to the blade cooling air delivery system with 11.4% increase of the thermal effectiveness and 10.2% decrease of the pressure loss versus the system without impellers.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3