Affiliation:
1. University of Miami, Coral Gables, FL
Abstract
This paper uses a fully coupled fluid/structure interaction (FSI) to investigate the flutter mechanism of a modern transonic fan rotor with a forward travelling wave. To induce an initial travelling wave for the blade structure, an initial BC that can facilitate each blade to vibrate with a time lag by a given nodal diameter (ND) is implemented. Unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved with a system of structure modal equations in a fully coupled manner. The 5th order WENO scheme with a low diffusion E-CUSP Riemann solver is used for the inviscid fluxes and a 2nd order central differencing is used for the viscous terms. A half annulus sector is used for the flutter simulations with a time shifted phase lag boundary condition at the circumferential boundaries. The present FSI simulations show that the shock instability causes the flutter. When the detached normal shock moves further upstream in a direction normal to the blade chord, the interaction of the detached normal shock with tip leakage vortex creates more serious blockage to the blade passage that can introduce an aerodynamic instability to the blade structure due to the incoming flow disturbance, resulting in flutter. The flutter of the transonic fan observed in this study occurs at the 1st mode before the stall. The predicted flutter boundary agrees well with the experiment.
Publisher
American Society of Mechanical Engineers
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献