Affiliation:
1. Alstom, Baden, Switzerland
Abstract
This paper investigates the heat transfer and pressure loss characteristic in the internal cooling system of the trailing edge of a gas turbine blade. The geometrical profile of the blade trailing edge and the operating conditions considered are representative of that normally found in a heavy-duty gas turbine. The trailing edge geometry consists of two radial passages with inclined turbulators which are connected with a bend. The trailing edge section consists of pins rows and a flow ejection cut-out slot. The impact of a cross-over hole in the web connecting the serpentine passages is also investigated.
Both numerical and experimental studies were conducted at several passage Reynolds numbers ranging from 104 to 106. Experiments were conducted in a Perspex model at atmospheric conditions. The internal heat transfer coefficients were measured via the transient liquid crystal method and the pressure drop was measured via pressure taps. The impact of blade rotation on the heat transfer and pressure drop was also assessed numerically.
Comparison of the measured and predicted heat transfer coefficients and pressure drops shows a good agreement for several flow conditions. The three-dimensional flow field in the passage and in the downstream pin banks was well captured numerically, with and without coolant injection via cross-over hole.
Publisher
American Society of Mechanical Engineers
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献