Time-Resolved Numerical Study of Axial Gap Effects on Labyrinth-Seal Leakage and Secondary Flow in a LP Turbine

Author:

Biester Marc H.-O.1,Wiegmann Florian1,Guendogdu Yavuz2,Seume Joerg R.1

Affiliation:

1. Leibniz Universität Hannover, Hannover, Germany

2. MTU Aero Engines GmbH, München, Germany

Abstract

One of the most promising ways to improve the efficiency of modern turbomachinery is the reduction of secondary flow-structures and associated losses. A widely spread approach is the usage of shrouded airfoils in combination with labyrinth-seals. The disadvantage of this arrangement is a small but inevitable labyrinth-leakage flow that tends to increase the secondary-flow structures. The present work investigates how the axial gap of the blade rows and the corresponding shift of the labyrinth’s inlet and outlet influences leakage related effects on the flow-field and loss-generation. In order to capture the inter-blade and leakage interaction properly, time-resolved RANS computations of a 1 1/2 stage low pressure turbine have been performed. Besides accounting for labyrinth seals, fillets have been modeled. The axial gap is varied from 20% to 80% axial chord length. Clocking-effects induced by the axial gap variation are compensated. The leakage flow nearly retains the flow direction of the flow entering the blade row. In case of the largest axial gap, mixing causes the flow-angle of the leakage to tend towards that of the main-flow, thus reducing the incidence on the downstream blade row. Therefore, the turning of the low-momentum flow is increased compared to a small axial gap. This leads to a higher loading in the affected region and an increased passage vortex can be observed. By comparing the entropy generation of computations with and without labyrinth seals, the regions where leakage-related losses occur are identified and the relevant mechanisms are distinguished.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3