Aero-Mechanical Optimization Design of a Transonic Fan Blade

Author:

Deng Xiangyang1,Guo Fushui1,Liu Yesheng1,Han Pinlian1

Affiliation:

1. AVIC Commercial Aircraft Engine Co., Ltd., Shanghai, China

Abstract

This paper presents the optimization design of a high bypass ratio civil fan blade with the consideration of aerodynamics, static and dynamic mechanics. The baseline fan blade was designed with a conventional approach without using automatic optimization techniques on both the aero side and the mechanical side. Therefore, the objective of this paper is to achieve a higher aero-mechanical performance under the multiple aerodynamic and mechanical constraints. Before the optimization, the static stress and modal analysis are performed on the baseline fan blade with/without the introduction of the arc dovetail root and shank. The results are compared to investigate the necessity of including the arc root and shank in the aero-mechanical optimization. With respect to the optimization process, the numerical design of experiment (DOE) by means of high fidelity CFD/FEA computations is firstly performed to construct the database for the initialization of Kriging surrogate mode. After that, the surrogate model is integrated with the optimization design process, and the non-dominated sorting genetic algorithm (NSGAII) is implemented to obtain the Pareto front, based on which the optimal design is selected. Utilizing this optimization process, both the aero-only and aero-mechanical optimizations are carried out. The results show that the attenuation of the 3D shock wave strength between the middle and shroud span improves the overall aero performance of the fan blade in both the aero-only optimal design and the aero-mechanical optimal design. Compared with the aero-only optimal design, the aero-mechanical optimal design shows the efficiency penalty within all the operation range simulated, however, the mechanical performance is significantly enhanced by the mitigation of the static stress level on the entire arc dovetail root and shank as well as the increase of the resonance margin.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3