Affiliation:
1. University of Pittsburgh, Pittsburgh, PA
2. U.S. DOE National Energy Technology Laboratory, Pittsburgh, PA
Abstract
The current study focused on the effects of varying jet diameter and surface roughness on the target plate from jet impingement. A single row of five jets, plenum fed, expels air onto the flat target surface and the spent air is constrained to exit in only one direction, causing the jets to encounter maximum cross-flow. Baseline jet plates were equipped with pressure taps, one for each jet, to determine flow. The initial parameters, diameter D, height to diameter H/D, and jet spacing to diameter S/D is 9.53 mm (0.375 in), 2 and 4 respectively. Upon defining the optimum array of jet diameters, three test cases will be conducted using different surface features, 90 degree ribs, chevrons and X-shaped ribs on the target plate to further enhance the heat transfer performance of the jet impingement. The parameters, width W and height H, for the surface features will be set constant at 3.18 mm (0.125 in). The Reynolds number, Re, in this experimental study ranged from 50,000 to 80,000. A transient liquid crystal technique is employed in this study to determine the local and average heat transfer coefficient distribution on the target plate. The baseline tests revealed that the heat transfer is more predominate in the upstream jets impingement zones, however, by varying the diameters the heat transfer is more uniformly distributed downstream. The results also revealed that the rib-turbulators, especially X-shaped ribs, can further enhance heat transfer enhancement in the downstream jets where crossflow can affect impingement.
Publisher
American Society of Mechanical Engineers
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献