Aerodynamic Design Optimization of Nacelle and Intake

Author:

Albert Moritz1,Bestle Dieter1

Affiliation:

1. Brandenburg University of Technology, Cottbus, Germany

Abstract

Design of nacelle and intake for an aero engine is highly complex and always a compromise between contradicting design goals. The intake has to provide air for the engine with minimal pressure loss at all flight conditions like take-off, cruise, approach, or crosswind. Further the airflow has to be evenly distributed to allow satisfying operation of the fan, and the nacelle should produce as less drag as possible. Taking this into account, the ideal lip shape alternates between thin to minimize drag during cruise and thick contour to cover the requirements at off-design conditions. To efficiently deal with these contradicting geometric design demands, a multi-objective optimization problem in 2D is defined. The major aim is to simultaneously minimize inner peak Mach number at off-design and outer peak Mach number at cruise conditions, i.e., two different flight conditions are taken into account which are evaluated in parallel. Three different parametric models are introduced to describe design changes, a first model, using superellipses and polynomials, a second one based on Class-Shape-Transformation, and a B-spline approach. To check the robustness of the design process, design of experiments for all three parameterization approaches have been performed. Based on these results proper design bounds are derived to ensure reliable CAD model generation, meshing and CFD analysis. Optimization results from a multi-objective genetic algorithm demonstrate feasibility of the proposed approach. Compared to an existing design based on human experience, the designs found are better with respect to both objectives.

Publisher

American Society of Mechanical Engineers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3