Geometric Size Optimization of Annular Step Fin Using Multi-Objective Genetic Algorithm

Author:

Deka Abhijit1,Datta Dilip2

Affiliation:

1. Department of Mechanical Engineering, School of Engineering, Tezpur University, Napaam, Tezpur, Assam 784 028, India e-mail:

2. Department of Mechanical Engineering, School of Engineering, Tezpur University, Napaam, Tezpur, Assam 784 028, India e-mails: ;

Abstract

Although an annular stepped fin can produce better cooling effect in comparison to an annular disk fin, it is yet to be studied in detail. In the present work, one-dimensional heat transfer in a two-stepped rectangular cross-sectional annular fin with constant base temperature and variable thermal conductivity is modeled as a multi-objective optimization problem. Taking cross-sectional half-thicknesses and outer radii of the two fin steps as design variables, an attempt is made to obtain the efficient fin geometry primarily by simultaneously maximizing the heat transfer rate and minimizing the fin volume. For further assessment of the fin performance, three more objective functions are studied, which are minimization of the fin surface area and maximization of the fin efficiency and effectiveness. Evaluating the heat transfer rate through the hybrid spline difference method, the well-known multi-objective genetic algorithm, namely, nondominated sorting genetic algorithm II (NSGA-II), is employed for approximating the Pareto-optimal front containing a set of tradeoff solutions in terms of different combinations of the considered five objective functions. The Pareto-optimal sensitivity is also analyzed for studying the influences of the design variables on the objective functions. As an outcome, it can be concluded that the proposed procedure would give an open choice to designers to lead to a practical stepped fin configuration.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3