Effects of Microstructure and Texture on DWTT Properties for High Strength Line Pipe Steels

Author:

Hara Takuya1,Shinohara Yasuhiro1,Asahi Hitoshi1,Terada Yoshio2

Affiliation:

1. Nippon Steel Corporation, Futtsu, Chiba, Japan

2. Nippon Steel Corporation, Kimitsu, Chiba, Japan

Abstract

The crack arrestability for high strength line pipe steels with tensile strength of 650 to 850 MPa was evaluated using precrack DWTT (pc-DWTT). Moreover, the effects of microstructure and texture on pc-DWTT energy were investigated. The pc-DWTT energy was remarkably affected by tensile strength. The pc-DWTT energy of ferrite and bainite/martensite dual phase steels was much higher than that of bainite single phase steels in comparison with the same tensile strength. The {100} plane is a cleavage plane in iron, so the brittle crack mainly propagates along the {100} plane. Bainte single phase steels indicated a high intensity of the {100} on the plane rotated 40° from the rolling plane with the axis of the rolling direction. On the other hand, ferrite and bainite/martensite dual phase steels indicated not only a high intensity of the {100} plane rotated 40° from the rolling plane, but also a high intensity of the {100} plane parallel to the rolling plane. Slant fracture could be easily formed by the high intensity of the {100} on the plane rotated 40° from the rolling plane if local brittle areas such as martensite and austenite constituent (M-A constituent), which became the initiation point of brittle fracture, existed. In contrast, separation tended to be formed by the high intensity of the {100} plane parallel to the rolling plane that was caused by the formation of ferrite and bainte/martensite dual phase microstructure. Thus, pc-DWTT energy and shear area were remarkably affected by microstructure and texture. Therefore, to control microstructure and texture is vay important for the improvement of pc-DWTT properties.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3