The Design, Development and Validation of an Innovative High Strength, Self Monitoring, Composite Pipe Liner for the Restoration of Energy Transmission Pipelines

Author:

Bethel Kyle1,Catha Steven C.1,Kanninen Melvin F.1,Stonesifer Randall B.1,Charbonneau Ken1,Ekelund Aron1,Mandich Ivan1,McIntosh Robin1,Stringfellow William D.1

Affiliation:

1. Smart Pipe Company, LP, Houston, TX

Abstract

The research described in this paper centers on a composite of thermoplastic materials that can be inserted in a degraded steel pipe to completely restore its strength. Through the use of fabrics consisting of ultra high strength fibers that are co-helically wrapped over a thin walled thermoplastic cylindrical tube that serves as a core, arbitrarily high pressures can be achieved. This paper first outlines the design, manufacturing and installation procedures developed for this unique material to provide a context for the engineering research. Based on this outline, the technological basis that has been developed for assuring the strength and long term durability of this concept during its insertion, and in its very long term service as a liner in energy transmission pipelines, is presented in detail. The research that is described includes burst testing of the material in stand alone pipe form, load/elongation testing of ultra high strength fabrics, and linear and nonlinear elastic and viscoelastic analysis models. This body of work indicates that the concept is fundamentally feasible for restoring a wide range of large diameter natural gas and liquid transmission pipelines to be able to carry arbitrarily high pressures over very long lifetimes. It also indicates that liners can be safely installed in long lengths even in lines with severe bends in a continuous manner. With further research the concept has the potential for eliminating hydro testing and smart pigging during service, and could possibly be installed in some lines that are currently unpiggable.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Study and Finite Element Analysis for the Installation of a Pipeline Into an Existing Pipeline;Journal of Offshore Mechanics and Arctic Engineering;2013-02-01

2. Time-Dependent Reliability Analysis of FRP Rehabilitated Pipes;Journal of Composites for Construction;2010-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3