Effect of Grade on Ductile Fracture Arrest Criteria for Gas Pipelines

Author:

Wilkowski G.1,Rudland D.1,Xu H.1,Sanderson N.2

Affiliation:

1. Engineering Mechanics Corporation of Columbus, Columbus, OH

2. BP Exploration

Abstract

Several different criteria have been proposed over the years to predict the minimum toughness for arrest of an axial propagating crack for natural gas pipelines. The initial ones were empirically based. The Battelle Two-Curve Method (TCM) was subsequently developed and was somewhat less empirical. The TCM is still used frequently today. Nevertheless, all of these criteria use the Charpy energy as a measure of the material’s ductile fracture resistance. As higher-grade steels have been developed, it has been found from full-scale tests that a multiplier was needed on the predicted minimum Charpy arrest energy value as calculated from the original TCM. Several researchers have also suggested that a correction factor was needed on the Charpy energy as the Charpy energy value increased above a certain level. This was a nonlinear correction factor that essentially showed that as the Charpy energy value surpassed a certain level, the effective energy for ductile fracture arrest is less than the total energy from the Charpy test. This paper presents background information on several of these toughness correction factors, as well as statistical analyses of full-scale pipe burst tests on 186 lengths of X60 to X100 grade pipes using these methods. The results show the effects of grade level on not only the original TCM predictions, but also several other modifications for high Charpy energy levels. Additionally, a method has also been developed where the DWTT energy was used instead of the Charpy energy in the Battelle TCM. The results of the statistical analyses showed that all the Charpy-energy-based criteria required an increasing correction factor as the grade level increased. The one DWTT energy criterion was statistically constant with grade level. This difference between the Charpy criteria and the DWTT criterion was traced back to a changing relationship between the Charpy and DWTT energy values as the grade of the steel increases.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3