Assessing the Use of Composite Materials in Repairing Mechanical Damage in Transmission Pipelines

Author:

Alexander Chris1,Worth Franz2

Affiliation:

1. Stress Engineering Services, Inc., Houston, TX

2. Air Logistics, Inc., Azusa, CA

Abstract

Mechanical damage involving dents with gouges is one of the leading causes of transmission pipeline failures in terms of both static and cyclic pressure loading. Because of the severity of this defect type, pipeline companies are required to respond to these anomalies by either removing damaged sections or repair using welded sleeves. For more than 10 years, composite materials have been used to repair corroded pipelines and their use has gained wide acceptance across the pipeline industry. Numerous systems have been tested with results being presented in the open literature. Testing was recently performed to assess the use of a water-activated composite repair system, Aquawrap®, in terms of its ability to repair mechanical damage subjected to cyclic pressure service. The Aquawrap® repair system has been extensively tested on corrosion defects but testing on pipes with dents had not been done. The water activated pre-preg urethane resin system offers excellent long tern (creep-rupture) strength combined with easy low cost field installation. Pipes having diameter to wall thickness ratios ranging from 34 to 68 were fitted with dents and gouges. Repair involved removing the gouged material of the pipe after indentation and repairing using the composite sleeve. The result of this specific test program showed that on-average the fatigue life for mechanically-damaged pipes can be increased on the order of three orders of magnitude when repaired by grinding and installing composite sleeves. This paper provides details on the methodology of the test program, results, and most importantly, information that can be used by operators in repairing their pipeline systems.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CFRP Reinforcement and Repair of Steel Pipe Elbows Subjected to Severe Cyclic Loading;Journal of Pressure Vessel Technology;2017-08-02

2. A continuum damage model for glass/epoxy laminates in tension;Composites Part B: Engineering;2013-09

3. Review of Gas Transmission Pipeline Repair Methods;Safety, Reliability and Risks Associated with Water, Oil and Gas Pipelines

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3