A Quantitative Approach to Tensile Strain Capacity of Pipelines

Author:

Wang Yong-Yi1,Liu Ming1,Horsley David2,Zhou Joe2

Affiliation:

1. Engineering Mechanics Corporation of Columbus, Columbus, OH

2. TransCanada PipeLines Limited, Calgary, AB, Canada

Abstract

Tensile strain rupture is an ultimate limit state. A limit state is stated in generic terms of “load” and “resistance” or alternatively termed “demand” and “capacity.” The “demand” of tensile rupture limit state is mostly related to displacement-controlled loading, such as that induced by frost heave, landslide, and seismic activities. The “capacity” is most often controlled by girth weld tensile strain limits, as girth welds tend to be the weakest link in pipelines experiencing high tensile strains. The tensile strain limits of girth welds are affected by a large number of factors: tensile and toughness properties of the pipe and weld, weld geometry, stress state, defect size and location. Consequently, closed-form solutions for tensile strain limits of girth welds do not yet exist in codes and standards. PRCI and TransCanada have funded a number of projects in recent years to develop fracture-mechanics-based procedures aimed at quantitative determination of girth weld tensile strain limits. The results of these projects, along with the reviews and examination of available experiment data by the authors, have culminated in a set of recommended procedures that enable the quantitative determination of the tensile strain capacity of pipelines. The required input parameters, formulae for the computation of tensile strain limits, limits of applicability, and suggested methods of applications are specified in the proposed procedures. This paper covers the technical basis of the procedures. Particular emphasis is placed on the validation of these procedures. The limitations of the procedures and future directions of improvements are suggested. It is believed that these procedures may lay the initial groundwork towards the eventual code implementation of a comprehensive set of tools for quantitative strain-based design of pipelines.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3