Natural Convection Along a Finite Vertical Plate

Author:

Yang R.1,Yao L. S.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287

Abstract

The discrepancy between the measured mean heat flux for natural convection on a finite vertical plate and the solution of Pohlhausen, Schmidt, and Beckmann has been known for a long time; no theoretical explanation has ever been provided. In this paper, a double-deck structure is introduced to account for the trailing-edge effect. This solution shows that the flow accelerates near the training edge due to the geometric discontinuity which leads to a decreased flow constraint. An inward normal flow is induced by the local flow acceleration and generates a change in the displacement of the thin viscous layer near the plate. Consequently a pressure disturbance is developed and transmits information upstream. The heat flux and wall shear stress both increase due to this flow acceleration. Even though the effect on the total heat flux is small, the local heat flux is modified substantially. Thus the smaller effects due to the leading edge, the displacement, and the wake cannot be the reason for the discrepancy.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development and analysis of thermal flow field: a new experimental approach;Journal of Engineering and Thermal Sciences;2023-12-23

2. Estimation of heat loss in thermal wave experiments;Journal of Applied Physics;2011-03-15

3. Free Convection About Vertical Circular Plate;Journal of Thermophysics and Heat Transfer;2009-10

4. NUMERICAL SOLUTION TO THE NATURAL CONVECTION ON VERTICAL ISOFLUX PLATES BY FULL ELLIPTIC EQUATIONS;Numerical Heat Transfer, Part A: Applications;2002-02-15

5. Problems encountered in heat transfer studies of a trombe wall;Energy Conversion and Management;1994-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3