Numerical Prediction of Fluid-Elastic Instability in Normal Triangular Tube Bundles With Multiple Flexible Circular Cylinders

Author:

Houri Jafari Hamed1,Ghadiri Dehkordi Behzad2

Affiliation:

1. Faculty Member Department of National Energy Master Plan, Institute for International Energy Studies (IIES), Tehran, Iran e-mail: ;

2. Faculty Member Department of Mechanical Engineering, School of Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

Prediction of fluid-elastic instability onset is a great matter of importance in designing cross-flow heat exchangers from the perspective of vibration. In the present paper, the threshold of fluid-elastic instability has been numerically predicted by the simulation of incompressible, unsteady, and turbulent cross flow through a tube bundle in a normal triangular arrangement. In the tube bundle under study, there were single or multiple flexible cylinders surrounded by rigid tubes. A finite volume solver based on a Cartesian-staggered grid was implemented. In addition, the ghost-cell method in conjunction with the great-source-term technique was employed in order to directly enforce the no-slip condition on the cylinders' boundaries. Interactions between the fluid and the structures were considered in a fully coupled manner by means of intermittence solution of the flow field and structural equations of motion in each time step of the numerical modeling algorithm. The accuracy of the solver was validated by simulation of the flow over both a rigid and a flexible circular cylinder. The results were in good agreement with the experiments reported in the literatures. Eventually, the flow through seven different flexible tube bundles was simulated. The fluid-elastic instability was predicted and analyzed by presenting the structural responses, trajectory of flexible cylinders, and critical reduced velocities.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3