Modeling Investigation of Different Methods to Suppress Engine Knock on a Small Spark Ignition Engine

Author:

Shao Jiankun1,Rutland Christopher J.2

Affiliation:

1. Engine Research Center, Department of Mechanical Engineering, University of Wisconsin–Madison, Madison, WI 53705 e-mail:

2. Professor Engine Research Center, Department of Mechanical Engineering, University of Wisconsin–Madison, Madison, WI 53705 e-mail:

Abstract

Knock is the main obstacle toward increasing the compression ratio and using lower octane number fuels. In this paper, a small two-valve aircraft spark ignition engine, Rotax-914, was used as an example to investigate different methods to suppress engine knock. It is generally known that if the octane number is increased and the combustion period is shortened, the occurrence of knock will be suppressed. Thus, in this paper, different methods were introduced for two effects, increasing ignition delay time in end-gas and increasing flame speed. In the context, KIVA-3V code, as an advanced 3D engine combustion simulation code, was used for engine simulations and chemical kinetics investigations were also conducted using chemkin. The results illustrated gas addition, such as hydrogen and natural gas addition, can be used to increase knock resistance of the Rotax-914 engine in some operating conditions. Replacing the traditional port injection method by direct injection strategy was another way investigated in this paper to suppress engine knock. Some traditional methods, such as adding exhaust gas recirculation (EGR) and increasing swirl ratio, also worked for this small spark ignition engine.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference36 articles.

1. Modeling Investigation of Auto-Ignition and Engine Knock by HO2,2014

2. A Performance Study of Iso-Butanol-, Methanol-, and Ethanol-Gasoline Blends Using a Single Cylinder Engine,1993

3. Knock Rating of Gaseous Fuels;ASME J. Eng. Gas. Turbines Power,2003

4. Knock Behavior of a Lean-Burn, H2 and CO Enhanced, SI Gasoline Engine Concept,2004

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3