Magnetic Erasures Due to Impact Induced Interfacial Heating and Magnetostriction

Author:

Suk M.1,Dennig P.1,Gillis D.1

Affiliation:

1. International Business Machines, Storage Systems Division, San Jose, CA 95193

Abstract

High-velocity intermittent contacts between a slider and a disk may lead to data erasure due to interfacial heating and high-speed mechanical contact stresses. These potential modes of erasure are investigated by artificially introducing high contact stresses that are not likely to be observed in disk drives. Nevertheless, the mechanisms of erasure are delineated in this study with little ambiguity by comparing the results from three different substrate materials, namely Al-Mg, glass, and Si. We show that written flux patterns can be erased if either the substrate material has low thermal conductivity or if the magnetic layer is damaged. We conclude that if the disk is not plastically damaged by high-speed contacts, then the magnetostriction effect or stress-induced erasure is insignificant. In this case, the dominant factor in erasure is a rise in the interfacial temperature, which is exacerbated by low thermal conductivity of the substrate. [S0742-4787(00)03401-9]

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3