Steady and Unsteady Complex Heat Transfer in Optically Thick Medium During Film Boiling

Author:

Avramenko A. A.1,Shevchuk I. V.2,Kovetskaya M. M.1,Kovetska Y. Y.1,Konyk A. V.1

Affiliation:

1. Institute of Engineering Thermophysics, National Academy of Sciences , Kiev 03057, Ukraine

2. Faculty of Computer Science and Engineering Science, TH Köln − University of Applied Sciences , Gummersbach 51643, Germany

Abstract

Abstract The paper presents the results of a study of radiative-convective heat transfer at film boiling of a liquid on a vertical heated plate. Both a steady-state problem of heat transfer and a transient problem were considered. The latter describes the instantaneous (flash) boiling up of a liquid on a heated surface. The novelty of the present study is the use of the optically thick medium approximation in a mathematical model when studying the process of radiation-convective heat transfer in the film boiling regime. For the first time, radiation heat transfer was considered for an optically thick medium. An analytical solution of the steady-state problems is obtained for boundary conditions involving a constant wall temperature and a constant wall heat flux. The effect of radiation and the temperature difference between the wall and liquid on the temperature profiles in the vapor phase is shown. The effect of radiation becomes more pronounced with an increase in the temperature difference between the wall and the liquid. As a result of solving the transient problem, the variation in time of the temperature profile and the heat transfer coefficient in the vapor film were obtained. The effect of radiation (Stark number) on the heat transfer coefficients is elucidated. An increase in the radiative heat flux leads to an increase in the Nusselt number, as well as the time it takes for the heat transfer process to reach a steady-state regime.

Funder

National Academy of Sciences of Ukraine

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3