Apparent Emissivity of Combustion Soot Aggregate Coating at High Temperature

Author:

Ran Fu Tai1,Bin Tian Ji2,Sheng Wang Hua3

Affiliation:

1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China e-mail:

2. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China

3. School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK

Abstract

Soot aggregates frequently occur during combustion or pyrolysis of fuels. The radiative properties of soot aggregates at high temperature are important for understanding soot characteristics and evaluating heat transfer in combustion systems. However, few data for soot radiative properties at high temperature were available. This work experimentally investigated the apparent emissivity of the soot aggregate coating at high temperature using spectral and total hemispherical measurements. The soot aggregate coatings were formed on nickel substrates by a paraffin flame. The surface and inner morphology of the coatings were characterized by scanning electron microscope (SEM). The thickness of the coating was 30.16 μm so the contribution of the smooth nickel substrate to the apparent radiation from the coating could be neglected. The total hemispherical emissivity of the coating on the nickel substrate was measured using the steady-state calorimetric method at different temperatures. The spectral directional emissivity of the coating was measured for the wavelength of 0.38–16.0 μm at the room temperature. The measurements show that the total hemispherical emissivity decreases from 0.895 to 0.746 as the temperature increases from 438 K to 1052 K. The total hemispherical emissivity of the coating deposited on the nickel substrate is much larger than those of the nickel substrate and a nickel oxidization film. The measured spectral emissivity of the coating at the room temperature was used to theoretically calculate the total hemispherical emissivity at different temperatures by integration with respect to wavelength. The measured and calculated total hemispherical emissivities were similar, but their changes relative to temperature were completely opposite. This difference is due to the fact that the spectral emissivity of the coating is a function of temperature. The present results provide useful reference data for analyzing radiative heat transfer at high temperature of soot aggregates in combustion processes.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3