An Investigation of Vibrational Power Flow in One-Dimensional Dissipative Phononic Structures

Author:

Al Ba'ba'a H.1,Nouh M.2

Affiliation:

1. Mechanical and Aerospace Engineering Department, University at Buffalo (SUNY), Buffalo, NY 14260

2. Mechanical and Aerospace Engineering Department, University at Buffalo (SUNY), Buffalo, NY 14260 e-mail:

Abstract

Owing to their ability to block propagating waves at certain frequencies, phononic materials of self-repeating cells are widely appealing for acoustic mitigation and vibration suppression applications. The stop band behavior achieved via Bragg scattering in phononic media is most commonly evaluated using wave propagation models which predict gaps in the dispersion relations of the individual unit cells for a given frequency range. These models are in many ways limited when analyzing phononic structures with dissipative constituents and need further adjustments to account for viscous damping given by complex elastic moduli and frequency-dependent loss factors. A new approach is presented which relies on evaluating structural intensity parameters, such as the active vibrational power flow in finite phononic structures. It is shown that the steady-state spatial propagation of vibrational power flow initiated by an external disturbance reflects the wave propagation pattern in the phononic medium and can thus be reverse engineered to numerically predict the stop band frequencies for different degrees of damping via a stop band index (SBI). The treatment is shown to be very effective for phononic structures with viscoelastic components and provides a clear distinction between Bragg scattering effects and wave attenuation due to material damping. Since the approach is integrated with finite element methods, the presented analysis can be extended to two-dimensional lattices with complex geometries and multiple material constituents.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3