Human–Robot Interfaces of the NeuRoboScope: A Minimally Invasive Endoscopic Pituitary Tumor Surgery Robotic Assistance System

Author:

Dede Mehmet İsmet Can1,Kiper Gökhan1,Ayav Tolga2,Özdemirel Barbaros3,Tatlıcıoğlu Enver4,Hanalioglu Sahin5,Işıkay İlkay5,Berker Mustafa5

Affiliation:

1. Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey

2. Department of Computer Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey

3. Department of Electrical and Electronics Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey

4. Department of Electrical and Electronics Engineering, Ege University, Bornova, Izmir 35040, Turkey

5. Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Altındağ, Ankara 06230, Turkey

Abstract

Abstract Endoscopic endonasal surgery is a commonly practiced minimally invasive neurosurgical operation for the treatment of a wide range of skull base pathologies including pituitary tumors. A common shortcoming of this surgery is the necessity of a third hand when the endoscope has to be handled to allow active use of both hands of the main surgeon. The robot surgery assistant NeuRoboScope system has been developed to take over the endoscope from the main surgeon's hand while providing the surgeon with the necessary means of controlling the location and direction of the endoscope. One of the main novelties of the NeuRoboScope system is its human–robot interface designs which regulate and facilitate the interaction between the surgeon and the robot assistant. The human–robot interaction design of the NeuRoboScope system is investigated in two domains: direct physical interaction (DPI) and master–slave teleoperation (MST). The user study indicating the learning curve and ease of use of the MST is given and this paper is concluded via providing the reader with an outlook of possible new human–robot interfaces for the robot assisted surgery systems.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3