Effect of Upstream Edge Geometry on the Trapped Mode Resonance of Ducted Cavities

Author:

Bolduc Michael1,Elsayed Manar1,Ziada Samir1

Affiliation:

1. McMaster University, Hamilton, ON, Canada

Abstract

Gas flow over ducted cavities can excite strong acoustic resonances within the confined volumes housing the cavities. When the wavelength of the resonant acoustic modes is comparable to, or smaller than, the cavity dimensions, these modes are referred to as trapped acoustic modes. The excitation mechanism causing the resonance of these trapped modes in axisymmetric shallow cavities has been investigated experimentally in a series of papers by Aly & Ziada [1–3]. In this paper, the same experimental set-up is used to investigate the effect of the upstream edge geometry on the acoustic resonance of trapped modes. The investigated geometries include sharp and rounded cavity corners, chamfering the upstream edge, and spoilers of different types and sizes. Rounding off the cavity edges is found to increase the pulsation amplitude substantially, but the resonance lock-on range is delayed, i.e. it is shifted to higher flow velocities. Similarly, chamfering the upstream corner delays the onset of resonance, but does not increase its intensity. Spoilers, or vortex generators, added at the upstream edge have been found to be the most effective means to suppress the resonance. However, the minimum spoiler size which is needed to suppress the resonance increases as the cavity size becomes larger.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3