Advanced Pipeline Vibroacoustic Monitoring

Author:

Bernasconi Giancarlo1,Del Giudice Silvio1,Giunta Giuseppe2,Dionigi Francesco2

Affiliation:

1. Politecnico di Milano, Milano, Italy

2. eni S.p.A.-Gas & Power Division, San Donato Milanese, Italy

Abstract

Remote real-time monitoring of pipelines reliability is becoming a key factor for the environmental sustainability of oil&gas industry. Multipoint Acoustic Sensing (MAS) technology makes use of multi sensors placed at discrete distances to detect Third Party Interference (TPI) and fluid leaks along the pipeline. In fact, any interaction with the pipe generates pressure waves that are guided within the fluid (gas or oil) for long distances, carrying information on the source event. Pressure propagation is mainly governed by the absorption coefficient and the sound speed. These parameters are in turn complicated functions of the frequency, the geometrical and elastic parameters of the pipe shell, the elastic parameters of the surrounding medium, and the acoustic and thermodynamic properties of the transported fluid. We have analyzed these aspects while processing acoustic data collected on crude oil and gas transportation pipelines, in different operational and flow conditions. This study describes the acquisition campaigns and the data analysis steps used for the experimental derivation of fluid properties and pipe anomalies. The results are also used for the validation of mathematical models of pressure waves propagation in fluid filled pipes.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3