A Dynamic Modeling Methodology to Estimate the Magnitude of Unwanted Liquid Flows in High Temperature Boiler Components

Author:

de Klerk Gary1,Rousseau Pieter1,Jestin Louis1

Affiliation:

1. Department of Mechanical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa

Abstract

Abstract Due to the penetration of variable renewable energy (VRE) sources into electricity supply grids, conventional coal fired power plants need to operate with greater flexibility while remaining reliable and conserving the lifetime of components. Thick-sectioned components are prone to thermal fatigue cracking as a result of through-wall temperature gradients. These temperature gradients can be significantly amplified during quenching when components at high temperature are unintentionally exposed to colder liquid or steam. Such quench events are known to occur during two-shift operation of a large once-through coal fired tower type boiler. The purpose of this study is to develop and demonstrate a model that can be used to determine the root cause and magnitude of quenching. The model is developed using the least level of detail to make it readily usable by power plant engineers. Two different approaches are used. A liquid tracking model (LTM) was developed from first principles that approximates the liquid level in the superheater as a function of time. The model is presented and verified by comparison with real-plant data. The second approach was to configure a model in flownex, which is a commercially available software package. The LTM model with eight control volumes provided better steam temperature results and was able to simulate the correct superheater pressure behavior without solving the momentum equation. The models proved that a separator overflow was the cause of quenching for this particular case study.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference38 articles.

1. IEA , 2018, “World Energy Outlook 2018,” IEA, Paris. Accessed September 2019.

2. Managing Thermal Quench Damage at Power Plants;Rosario,2019

3. Failure Investigation of Eddystone Main Steam Piping;Delong;Welding J.,1985

4. Current Experience in Typical Problems and Failures With Boiler Piping Components and Supports;King,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3