Nonlinear Phenomena in Thermoacoustic Systems With Premixed Flames

Author:

Kashinath Karthik1,Hemchandra Santosh2,Juniper Matthew P.1

Affiliation:

1. Engineering Department, University of Cambridge, Cambridge CB2 1PZ, UK e-mail:

2. Institute of Aerodynamics, RWTH Aachen University, Aachen 52062, Germany e-mail:

Abstract

Nonlinear analysis of thermoacoustic instability is essential for the prediction of the frequencies, amplitudes, and stability of limit cycles. Limit cycles in thermoacoustic systems are reached when the energy input from driving processes and energy losses from damping processes balance each other over a cycle of the oscillation. In this paper, an integral relation for the rate of change of energy of a thermoacoustic system is derived. This relation is analogous to the well-known Rayleigh criterion in thermoacoustics, however, it can be used to calculate the amplitudes of limit cycles and their stability. The relation is applied to a thermoacoustic system of a ducted slot-stabilized 2-D premixed flame. The flame is modeled using a nonlinear kinematic model based on the G-equation, while the acoustics of planar waves in the tube are governed by linearized momentum and energy equations. Using open-loop forced simulations, the flame describing function (FDF) is calculated. The gain and phase information from the FDF is used with the integral relation to construct a cyclic integral rate of change of energy (CIRCE) diagram that indicates the amplitude and stability of limit cycles. This diagram is also used to identify the types of bifurcation the system exhibits and to find the minimum amplitude of excitation needed to reach a stable limit cycle from another linearly stable state for single-mode thermoacoustic systems. Furthermore, this diagram shows precisely how the choice of velocity model and the amplitude-dependence of the gain and the phase of the FDF influence the nonlinear dynamics of the system. Time domain simulations of the coupled thermoacoustic system are performed with a Galerkin discretization for acoustic pressure and velocity. Limit cycle calculations using a single mode, along with twenty modes, are compared against predictions from the CIRCE diagram. For the single mode system, the time domain calculations agree well with the frequency domain predictions. The heat release rate is highly nonlinear but, because there is only a single acoustic mode, this does not affect the limit cycle amplitude. For the twenty-mode system, however, the higher harmonics of the heat release rate and acoustic velocity interact, resulting in a larger limit cycle amplitude. Multimode simulations show that, in some situations, the contribution from higher harmonics to the nonlinear dynamics can be significant and must be considered for an accurate and comprehensive analysis of thermoacoustic systems.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference40 articles.

1. Combustion Instabilities in Gas Turbine Engines,2005

2. Application of the Galerkin Methods in the Solution of Nonlinear Axial Combustion Instability Problems in Liquid Rockets;Combust. Sci. Technol.,1972

3. Nonlinear Behaviour of Acoustic Waves in Combustion Chambers—Part 1;Acta Astronaut.,1976

4. Nonlinear Behaviour of Acoustic Waves in Combustion Chambers—Part 2;Acta Astronaut.,1976

5. On the Existence and Stability of Limit Cycles for Transverse Acoustic Oscillations in a Cylindrical Combustion Chamber. I: Standing Modes;Combust. Sci. Technol.,1990

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3