Gas Path Fault Diagnosis of Turboshaft Engine Based on Novel Transfer Learning Methods

Author:

Zhao Yong-Ping1,Jin Hui-Jie1,Liu Hao1

Affiliation:

1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing 210016, China

Abstract

Abstract Data-driven fault diagnosis method is widely used in the field of engine health management, which uses engine sensor data as input and engine faulty components as output for component-level fault diagnosis of the engine. The application premise of the general data-driven fault diagnosis method is that all data come from the same working conditions, that is, they belong to the same distribution. However, this assumption is not valid in the actual engine fault diagnosis, because the engine state will change with the increase of running time. In the meantime, collecting engine data is usually expensive, time-consuming, and laborious. To solve these problems, extreme learning machine (ELM)-based two transfer learning methods for fault diagnosis of turboshaft engines are proposed in this paper. One is joint solving ELM (JSELM), which regards the information of the target domain and source domain as similar and different parts, respectively, and knowledge is extracted from them at the same time. The other is model transfer-based ELM (MTELM), which uses the idea of pretraining. First, a general ELM classifier is trained with the source domain data and then fine-tuned with the target domain data. Both methods have a good real-time performance as the traditional ELM. When there are a few data in the target domain, they achieve much better classification accuracy than traditional ELM. Finally, experiments are carried out with turboshaft engine simulation data. The results show that both methods are effective, especially MTELM, which has better classification accuracy.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3