Theoretical Analyses of Heat Balance in a Diesel/Natural Gas Dual-Fuel Engine at Low and Medium Loads Based on Experimental Values

Author:

Wang Zhongshu1,Du Guizhi1,Li Ming1,Xu Yun1,Zhang Fangyuan1

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China

Abstract

Abstract In order to propose the control strategies based on exergy to realize efficient and energy-saving operation of the engine, the energy and exergy balance under sensitive boundary conditions were analyzed with the first and second laws of thermodynamics on a six-cylinders, four strokes, turbocharged, intercooled, and high-pressure common rail diesel/natural gas (NG) dual-fuel engine in this paper. The results depicted that the thermal efficiency and exergy efficiency decrease with the increase of NG percentage energy substitution rate (PES). Compared with other conditions, at medium load, 1978 rpm and 90% PES, the exergy destruction caused by irreversibility process including mixing combustion, heat transfer and mechanical friction reaches 72.33%. With the advance of diesel injection time (Tinj), thermal efficiency and energy fraction of heat transfer increase first and then decrease. However, diesel injection pressure (Pinj) has little effect on improving energy utilization. Compared with single diesel injection, appropriate multiple diesel injection can improve combustion performance and energy utilization. When the first Tinj is 35 deg CA BTDC and second Tinj is 25 deg CA BTDC, nearly 50% of the energy lost in heat transfer can be converted into useful work. The lost exergy can be reduced by choosing appreciate Tinj and Pinj, adding exhaust gas recirculation (EGR) to reduce in-cylinder temperature to improve combustion and using thermal insulation materials to reduce heat transfer or using the lost heat in other processes such as preheating intake air and producing the hot water or steam of external consumption to reduce the exergy destruction.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference45 articles.

1. Diesel Emissions in Review;SAE. Int. J. Engines,2011

2. A Modified Diesel Engine for Natural Gas Operation: Performance and Emission Tests;Energy,2011

3. Experimental Investigation Concerning the Effect of Natural Gas Percentage on Performance and Emissions of a DI Dual Fuel Diesel Engine;Appl. Therm. Eng.,2003

4. Combustion and Exhaust Emission Characteristics of a Dual Fuel Compression Ignition Engine Operated With Pilot Diesel Fuel and Natural Gas;Energy Convers. Manage.,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3