A Numerical Study of the Effects of the Velocity Ratio on Coflow Jet Characteristics

Author:

Zhang Xinchen1,Chin Rey C.1

Affiliation:

1. School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia

Abstract

Abstract In this study, large eddy simulations (LES) of turbulent coflow jets are performed and designed to investigate the effects of the jet-to-coflow velocity ratio, Vr, on jet characteristics. A fully developed turbulent pipe flow at Re=10,000, based on the bulk velocity and pipe diameter, is employed as the jet outlet in this work. A comparison between laminar and turbulent jets is performed against the experimental results of a jet produced by a fully developed turbulent pipe flow. For the coflow jet, simulations with different jet-to-coflow velocity ratios (Vr = 3, 6, 12, and ∞) are performed to investigate the turbulence intensities and the decay of the centerline velocity of the jet. The results give two constant decay rates: Ku≈0.144 for single-phase jets and Ku≈0.133 for particle-laden jets. With a decrease in Vr (i.e., a higher coflow velocity), the results show a higher peak value and a larger droop rate for turbulence intensities. This study is then extended to investigate particle distribution under a two-way coupling regime, using a Lagrangian framework. The particle velocity and distribution along the jet centerline, and the particle clustering and radial probability distribution in the jet downstream domain are analyzed with the same coflow jet parameters. The particles tend to move faster and distribute preferentially in the center region with a decrease in Vr, which agrees with the increasing turbulence intensities along the jet centerline in the present work.

Publisher

ASME International

Subject

Mechanical Engineering

Reference42 articles.

1. Flow Structure of the Free Round Turbulent Jet in the Initial Region;J. Fluid Mech.,1979

2. Entrapment Characteristics of Transient Gas Jets;Numer. Heat Transfer, Part A Appl.,1996

3. Turbulence Measurements in Axisymmetric Jets of Air and Helium—Part 1. Air Jet;J. Fluid Mech.,1993

4. Small-Scale Isotropy and Universality of Axisymmetric Jets;Phys. Fluids,2007

5. Reynolds Number Effects Within the Development Region of a Turbulent Round Free Jet;Int. J. Heat Mass Transfer,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3