Affiliation:
1. Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA 92697
2. Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697
Abstract
Abstract
As the heat generation at device footprint continuously increases in modern high-tech electronics, there is an urgent need to develop new cooling devices that balance the increasing power demands. To meet this need, cutting-edge cooling devices often utilize microscale structures that facilitate two-phase heat transfer. However, it has been difficult to understand how microstructures enhance evaporation performances through traditional experimental methods due to low spatial resolution. The previous methods can only provide coarse interpretations on how physical properties such as permeability, thermal conduction, and effective surface areas interact at the microscale to effectively dissipate heat. This motivates researchers to develop new methods to observe and analyze local evaporation phenomena at the microscale. Herein, we present techniques to characterize submicron to macroscale evaporative phenomena of microscale structures by using microlaser-induced fluorescence (μLIF). We corroborate the use of unsealed temperature-sensitive dyes by systematically investigating the effects of temperature, concentration, and liquid thickness on the fluorescence intensity. Considering these factors, we analyze the evaporative performances of microstructures using two approaches. The first approach characterizes the overall and local evaporation rates by measuring the solution drying time. The second approach employs an intensity-to-temperature calibration curve to convert temperature-sensitive fluorescence signals to surface temperatures, which calculates the submicron-level evaporation rates. Using these methods, we reveal that the local evaporation rate between microstructures is high but is balanced with a large capillary-feeding. This study will enable engineers to decompose the key thermofluidic parameters contributing to the evaporative performance of microscale structures.
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献