Comparison of Coriolis and Turbine-Type Flowmeters for Fuel Measurement in Gas Turbine Testing

Author:

MacLeod J. D.1,Grabe W.1

Affiliation:

1. National Research Council, Ottawa, Ontario, Canada

Abstract

The Machinery and Engine Technology (MET) Program of the National Research Council of Canada (NRCC) has established a program for the evaluation of sensors to measure gas turbine engine performance accurately. The precise measurement of fuel flow is an essential part of steady-state gas turbine performance assessment. Prompted by an international engine testing and information exchange program, and a mandate to improve all aspects of gas turbine performance evaluation, the MET Laboratory has critically examined two types of fuel flowmeters, Coriolis and turbine. The two flowmeter types are different in that the Coriolis flowmeter measures mass flow directly, while the turbine flowmeter measures volumetric flow, which must be converted to mass flow for conventional performance analysis. The direct measurement of mass flow, using a Coriolis flowmeter, has many advantages in field testing of gas turbines, because it reduces the risk of errors resulting from the conversion process. Turbine flowmeters, on the other hand, have been regarded as an industry standard because they are compact, rugged, reliable, and relatively inexpensive. This paper describes the project objectives, the experimental installation, and the results of the comparison of the Coriolis and turbine-type flowmeters in steady-state performance testing. Discussed are variations between the two types of flowmeters due to fuel characteristics, fuel handling equipment, acoustic and vibration interference, and installation effects. Also included in this paper are estimations of measurement uncertainties for both types of flowmeter. Results indicate that the agreement between Coriolis and turbine-type flowmeters is good over the entire steady-state operating range of a typical gas turbine engine. In some cases the repeatability of the Coriolis flowmeter is better than the manufacturer’s specification. Even a significant variation in fuel density (10 percent), and viscosity (300 percent) did not appear to compromise the ability of the Coriolis flowmeter to match the performance of the turbine flowmeter.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference10 articles.

1. FTI, 1982, “Installation, Operation and Maintenance Manual Omnitrak,” Flow Technology, Inc., 4250 East Broadway Road, Phoenix, AZ 85040.

2. Furness R. A. , 1991, “BS7405: The Principles of Flowmeter Selection,” Flow Measurement and Instrumentation, Vol. 2, Oct. pp. 233–242.

3. Grabe, W., 1988, “Fuel Flow Measurement in Gas Turbine Testing,” Division of Mechanical Engineering, National Research Council, Ottawa, Ontario, TR-ENG-001 (NRC No. 29808).

4. Grabe, W., 1991, “Turbine Flowmeter Calibration,” Institute for Mechanical Engineering, National Research Council, Ottawa, Ontario, CAT-ENG-013.

5. Keita N. M. , 1989, “Contribution to the Understanding of the Zero Shift Effects in Coriolis Mass Flowmeters,” Flow Measurement and Instrumentation, Vol. 1, Oct. pp. 39–43.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3