Assessment of Deterministic Shape Optimizations Within a Stochastic Framework for Supersonic Organic Rankine Cycle Nozzle Cascades

Author:

Romei Alessandro1,Congedo Pietro Marco2,Persico Giacomo3

Affiliation:

1. Laboratory of Fluid Machines (LFM), Energy Department, Politecnico di Milano, Via Lambruschini 4, Milan 20156, Italy e-mail:

2. DeFI Team (INRIA SIF, Ecole Polytechnique), CMAP Lab, 1 Rue d'Estienne d'Orves, Palaiseau 91120, France

3. Laboratory of Fluid Machines (LFM), Energy Department, Politecnico di Milano, Via Lambruschini 4, Milan 20156, Italy

Abstract

The design of converging–diverging blades for organic Rankine cycle (ORC) applications widely relies on automated shape-optimization processes. As a result, the optimization produces an adapted-nozzle cascade at the design conditions. However, only few works account for the uncertainties in those conditions and their consequences on cascade performance. The proposed solution, i.e., including uncertainties within the optimization routine, demands an overall huge computational cost to estimate the target output statistic at each iteration of the optimization algorithm. With the aim of understanding if this computational cost is avoidable, we study the impact of uncertainties in the design conditions on the robustness of deterministically optimized profiles. Several optimized blades, obtained with different objective functions, constraints, and design variables, are considered in the present numerical analysis, which features a turbulent compressible flow solver and a state-of-the-art uncertainty-quantification (UQ) method. By including measured field variations in the formulation of the UQ problem, we show that a deterministic shape optimization already improves the robustness of the profile with respect to the baseline configuration. Guidelines about objective functions and blade parametrizations for deterministic optimizations are also provided. Finally, a novel methodology to estimate the mass-flow-rate probability density function (PDF) for choked supersonic turbines is proposed, along with a robust reformulation of the constraint problem without increasing the computational cost.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3