AUDIT: Functional Qualification in Additive Manufacturing Via Physical and Digital Twins

Author:

Biehler Michael1,Mock Reinaldo2,Kode Shriyanshu3,Mehmood Maham4,Bhardwaj Palin5,Shi Jianjun1

Affiliation:

1. Georgia Institute of Technology H. Milton School of Industrial and Systems Engineering, , 755 Ferst Dr NW, Atlanta, GA 30332

2. Georgia Institute of Technology Wallace H. Coulter Department of Biomedical Engineering, , 313 Ferst Dr NW, Atlanta, GA 30332

3. Georgia Institute of Technology School of Computer Science, , 266 Ferst Dr, Atlanta, GA 30332

4. Georgia Institute of Technology George W. Woodruff School of Mechanical Engineering, , 801 Ferst Dr NW, Atlanta, GA 30318

5. Georgia Institute of Technology Daniel Guggenheim School of Aerospace Engineering, , 270 Ferst Dr NW, Atlanta, GA 30332

Abstract

Abstract Additive manufacturing (AM) has revolutionized the way we design, prototype, and produce complex parts with unprecedented geometries. However, the lack of understanding of the functional properties of 3D-printed parts has hindered their adoption in critical applications where reliability and durability are paramount. This paper proposes a novel approach to the functional qualification of 3D-printed parts via physical and digital twins. Physical twins are parts that are printed under the same process conditions as the functional parts and undergo a wide range of (destructive) tests to determine their mechanical, thermal, and chemical properties. Digital twins are virtual replicas of the physical twins that are generated using finite element analysis (FEA) simulations based on the 3D shape of the part of interest. We propose a novel approach to transfer learning, specifically designed for the fusion of diverse, unstructured 3D shape data and process inputs from multiple sources. The proposed approach has demonstrated remarkable results in predicting the functional properties of 3D-printed lattice structures. From an engineering standpoint, this paper introduces a comprehensive and innovative methodology for the functional qualification of 3D-printed parts. By combining the strengths of physical and digital twins with transfer learning, our approach opens up possibilities for the widespread adoption of 3D printing in safety-critical applications. Methodologically, this work presents a significant advancement in transfer learning techniques, specifically addressing the challenges of multi-source (e.g., digital and physical twins) and multi-input (e.g., 3D shapes and process variables) transfer learning.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3