Comparison of Probability and Possibility for Design Against Catastrophic Failure Under Uncertainty

Author:

Nikolaidis Efstratios1,Chen Sophie2,Cudney Harley3,Haftka Raphael T.4,Rosca Raluca4

Affiliation:

1. Mechanical, Industrial and Manufacturing Engineering Department, The University of Toledo, Toledo, OH 43606

2. Aerospace and Ocean Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

3. Applied Research Associates Inc., 415 Waterman Road, South Royalton, VT 05068

4. Department of Aerospace Engineering, Mechanics and Engineering Science, The University of Florida, Gainesville, FL 32611-6250

Abstract

This paper compares probabilistic and possibility-based methods for design under uncertainty. It studies the effect of the amount of data about uncertainty on the effectiveness of each method. Only systems whose failure is catastrophic are considered, where catastrophic means that the boundary between success and failure is sharp. First, the paper examines the theoretical foundations of probability and possibility, focusing on the impact of the differences between the two theories on design. Then the paper compares the two theories on design problems. A major difference between probability and possibility is in the axioms about the union of events. Because of this difference, probability and possibility calculi are fundamentally different and one cannot simulate possibility calculus using probabilistic models. Possibility-based methods tend to underestimate the risk of failure of systems with many failure modes. For example, the possibility of failure of a series system of nominally identical components is equal to the possibility of failure of a single component. When designing for safety, the two methods try to maximize safety in radically different ways and consequently may produce significantly different designs. Probability minimizes the system failure probability whereas possibility maximizes the normalized deviation of the uncertain variables from their nominal values that the system can tolerate without failure. In contrast to probabilistic design, which accounts for the cost of reducing the probability of each failure mode in design, possibility tries to equalize the possibilities of failure of the failure modes, regardless of the attendant cost. In many safety assessment problems, one can easily determine the most conservative possibilistic model that is consistent with the available information, whereas this is not the case with probabilistic models. When we have sufficient data to build accurate probabilistic models of the uncertain variables, probabilistic design is better than possibility-based design. However, when designers need to make subjective decisions, both probabilistic and possibility-based designs can be useful. The reason is that large differences in these designs can alert designers to problems with the probabilistic design associated with insufficient data and tell them that they have more flexibility in the design than they may have known.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction;Uncertainty-Based Ship Design Optimization;2024

2. Uncertainty Quantification Code Written in MATLAB;Communications in Computer and Information Science;2024

3. Reliability estimation of complex systems based on a Wiener process with random effects and D-vine copulas;Microelectronics Reliability;2022-11

4. A copula-based uncertainty propagation method for structures with correlated parametric p-boxes;International Journal of Approximate Reasoning;2021-11

5. Reliability-based topology optimization using stochastic gradients;Structural and Multidisciplinary Optimization;2021-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3