Analysis of radial roller bearing rating life in complex loading conditions

Author:

Ivannikov Vladimir1,Leontiev Mikhail2,Degtyarev Sergey3,Popov Valeriy4

Affiliation:

1. Max-Planck-Straße 1 Geesthacht, 21502 Germany

2. Volokolamskoe shosse 4 Moscow, 125993 Russian Federation

3. Leningradskaya Street 1 Khimki, 141400 Russian Federation

4. 2-nd Baumanskaya Street 5-1 Moscow, 105005 Russian Federation

Abstract

Abstract An approach for accurate life analysis of radial roller bearings in complex loading conditions is presented. It employs ISO~16281 and accounts not only for external radial loads applied to the inner ring, but also for (i) internal bearing clearance, (ii) flexibility of the bearing rings, (iii) rings out-of-roundness, (iv) inertia effects, (v) rolling elements profile and (vi) rings misalignment. In the last decades these factors have been becoming more and more important for modern high-performance jet engines, whose shafts are commonly hollow and the housing and the rings thicknesses may be of comparable magnitudes. To obtain the distribution of internal contact forces, an advanced static model of a bearing with deformable, potentially misaligned, rings is developed. The bending deformations of the rings are reproduced superimposing deformed shapes from each of the arising internal contact force applied individually. Bearing rollers are allowed to have non-cylindrical profile, its geometry is approximated by means of slices each having constant diameter. A robust numerical scheme for solving the resultant set of equations with the aid of the barrier functions method is constructed. To increase even further the accuracy of rating life analysis, distributions of the contact stresses between the roller and the ring surfaces, obtained by solving numerically the problem of non-Hertzian interaction, are added to computations. A numerical benchmark test is presented to demonstrate the applicability of the developed approach. It shows how the aforementioned factors influence the bearing contact forces and its rating life.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3