Optimization of Turbine Cascade Squealer Tip Cooling Design by Combining Shaping and Flow Injection

Author:

Duan P. H.1,He L.1

Affiliation:

1. Osney Laboratory, University of Oxford, Oxford OX1 3PJ, UK

Abstract

Abstract In this study, a turbine cascade squealer tip is optimized by a multi-objective genetic algorithm (MOGA) with varying squealer heights and tip cooling configurations. The three objectives selected are the aerodynamic efficiency, the film cooling effectiveness, and the surface fluid temperature variance. The multi-scale methodology is implemented to reduce the computational cost and to skip the meshing of cooling holes. Two optimization approaches are compared: (a) a conventional method that optimizes an uncooled shape and the cooling configuration sequentially and (b) a method that optimizes shaping and cooling concurrently. The concurrent method is found to obtain better aerodynamic efficiency and heat transfer performance than the conventional optimization. Moreover, the aerodynamic efficiency ranking is changed by adding cooling to the uncooled blades. These observations are due to the strong interaction between the coolant and the tip leakage flow. They indicate that the coolant injected at the tip is not passive as expected in the conventional film cooling designs. By blocking the over tip leakage flow or forming a layer of air to level up the equivalent squealer cavity floor, the coolant can reduce the tip leakage loss, which contradicts the conventional wisdom that the added coolant should always lead to extra losses due to the extra mixing. The detailed observations of the flow field indicate that the influence of the squealer height towards the aerodynamic efficiency is caused by two competing effects: the blockage effect to reduce the tip leakage mass flowrate and the sudden expansion/contraction loss effect to generate additional loss.

Publisher

ASME International

Subject

Mechanical Engineering

Reference38 articles.

1. Loss Mechanisms in Turbomachines;Denton;ASME J. Turbomach.,1993

2. Loss Generation in Transonic Turbine Blading;Duan;ASME J. Turbomach.,2018

3. Shannon, K. R. , 2018, “Loss Mechanisms in a Highly Loaded Transonic Axial Turbine Stage,” Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA.

4. Internal Flow

5. Blade Loading Effects on Axial Turbine Tip Leakage Vortex Dynamics and Loss;Huang;ASME J. Turbomach.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3