Curvature Singularity of Space Curves and Its Relationship to Computational Mechanics

Author:

Shabana Ahmed A.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607

Abstract

Abstract Curve geometry plays a fundamental role in many aspects of analytical and computational mechanics, particularly in developing new data-driven science (DDS) approaches. Furthermore, curvature and torsion of space curves serve as deformation measures that need to be properly interpreted, shedding light on the significance of relationship between differential-geometry curve framing methods and computational-mechanics motion description. Alternate space-curve framing methods were proposed to address the existence of Frenet frame at isolated zero-curvature points. In this paper, both mechanics and differential-geometry approaches are used to establish Frenet-frame continuity and the existence of Serret-Frenet equations at curvature-vanishing points for curves with arbitrary parameterization. Frenet–Euler angles, referred to for brevity as Frenet angles, are used to define curve geometry, with particular attention given to the definition of Frenet bank angle used to prove the existence of curve normal and binormal vectors at curvature-vanishing points. Solving curvature-singularity problem and using mechanics description based on Frenet angles contributes to successful development and computer implementation of new DDS approaches based on analysis of recorded motion trajectories (RMT). Centrifugal-inertia force is always in direction of curve normal vector, and in most applications, this force is continuous and approaches zero value as curve curvature approaches zero. Discontinuity in definition of Frenet frame can negatively impact the quality of numerical results that define RMT curves. The study also demonstrates that Frenet-frame curvature singularity can be solved without need for integrating curve torsion, which is not, in general, an exact differential.

Funder

National Science Foundation

Publisher

ASME International

Reference19 articles.

1. There Is More Than One Way to Frame a Curve;Bishop;Amer. Math. Monthly,1975

2. Special Bishop Motion and Bishop Darboux Rotation Axis of the Space Curve;Bahaddin Bukcu;J. Dyn. Syst. Geom. Theor.,2008

3. The Slant Helices According to Bishop Frame;Bahaddin Bukcu;World Acad. Sci. Eng. Technol.,2009

4. Quaternion Frame Approach to Streamline Visualization;Andrew;IEEE Trans. Vis. Comput. Graph.,1995

5. A Global Formulation of the Condition for a Curve to Lie on a Sphere;Yung-chow Wong;Monatsh. Fur Math.,1963

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Space-curve Cartan matrix and exact differentiability of the curvature and torsion;Mechanics Based Design of Structures and Machines;2022-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3