Fuel Oil Reburning Application for NOx Control to Firetube Package Boilers

Author:

Mulholland J. A.1,Hall R. E.1

Affiliation:

1. U. S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, Research Triangle Park, NC 27711

Abstract

Two pilot-scale (0.73 MW or 2.5 × 106 Btu/hr) firetube package boilers were retrofitted for fuel oil reburning application for NOx emission control. When firing distillate fuel oil (0.01 percent nitrogen content), an overall NOx reduction of 46 percent from an uncontrolled emission of 125 ppm (dry, at zero percent O2) was realized by diverting 20 percent of the total boiler load to a second stage burner; a 51 percent NOx reduction from 265 ppm was achieved in a distillate/residual fuel oil mixture (0.14 percent nitrogen content) reburning application. Nitrogen-free fuel oil reburning was found to be slightly more effective at reducing NOx than was natural gas reburning, although longer fuel-rich zone residence times were required to allow for evaporation and mixing of the fuel oil droplets. Key parameters investigated which impact the reburning process were: primary flame NOx, reburn zone stoichiometry, and reburn zone residence time. Reburning applied to firetube package boilers requires minimal facility modification. Reburning can be coupled with other NOx control techniques (e.g., distributed air low NOx burners) to achieve NOx emissions of less than 100 ppm. However, for very low primary flame NOx conditions (i.e., less than 200 ppm), reburning fuel nitrogen content is a limiting factor, and reburning with a low-nitrogen-content fuel, such as natural gas or nitrogen-free distillate oil, may be necessary to achieve 50 percent NOx reduction.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3