Symbolic Time Series Analysis for Anomaly Detection in Measure-Invariant Ergodic Systems

Author:

Ghalyan Najah F.1,Ray Asok2

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802; Department of Mechanical Engineering, The University of Kerbala, Kerbala 56001, Iraq

2. Department of Mechanical Engineering; Department of Mathematics, The Pennsylvania State University, University Park, PA 16802

Abstract

Abstract This paper presents a novel framework of symbolic time series analysis (STSA) for anomaly detection in dynamical systems. The core concept is built upon a property of measure-preserving transformation (MPT) sequence, acting on a probability space with ergodic measure, that the eigenfunctions of these transformations would be time-invariant. As a result, unlike a standard STSA that is required to generate time-homogeneous Markov chains, the proposed MPT-based STSA is allowed to have time-inhomogeneous Markov chains, where the (possibly time-varying) state transition probability matrices have time-invariant eigenvectors. Such a time-invariance facilitates analysis of the dynamical system by using short-length time series of measurements. This is particularly important in applications, where the underlying dynamics and process anomalies need fast monitoring and control actions in order to mitigate any potential structural damage and/or to avoid catastrophic failures. The MPT-based STSA has been applied for low-delay detection of fatigue damage, which is a common source of failures in mechanical structures and which is known to have uncertain dynamical characteristics. The underlying algorithm has been validated with experimental data generated from a laboratory apparatus that uses ultrasonic sensors to detect fatigue damage in polycrystalline–alloy specimens. The performance of the proposed MPT-based STSA is evaluated by comparison with those of a standard STSA and a hidden Markov model (HMM) on the same experimental data. The results consistently show superior performance of the MPT-based STSA.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference42 articles.

1. Time Series Modeling by a Regression Approach Based on a Latent Process;Neural Networks,2009

2. Multiscale Change Point Inference;J R. Stat Soc. Ser. B: Stat. Methol.,2014

3. Continuous Inspection Schemes;Biometrika,1954

4. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition;Proc. IEEE,1989

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3