STEAM: A Mobile Hydraulic System With Engine Integration

Author:

Vukovic Milos1,Sgro Sebastian1,Murrenhoff Hubertus1

Affiliation:

1. RWTH Aachen University, Aachen, Germany

Abstract

In recent years, research institutions worldwide have developed a number of new mobile hydraulic systems. Despite their improved energy efficiency, these systems have yet to gain market acceptance due to their related increase in component costs and decrease in robustness. At the Institute for Fluid Power Drives and Controls in Aachen, a new system for mobile machines, named STEAM (Steigerung der Energieeffizienz in der Arbeitshydraulik mobiler Arbeitsmaschinen), is being developed using inexpensive off-the-shelf components. The aim is to improve the total system efficiency by considering all the subsystems in the machine. This is done by integrating the internal combustion engine (ICE) into the hydraulic design process. By using a constant pressure system in combination with a low-cost fixed displacement pump the hydraulic system is designed to ensure the ICE experiences a constantly high load in a region of high efficiency, so-called point operation. To decrease the hydraulic losses incurred when supplying the linear actuators with flow, an additional intermediate pressure rail with independent metering edges is used. This enables various energy efficient discrete operating modes, including energy regeneration and recuperation.

Publisher

American Society of Mechanical Engineers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Power-Split Hybrid Transmission to Drive Conventional Hydraulic Valve Controlled Architectures in Off-road Vehicles:;JFPS International Journal of Fluid Power System;2022

2. Design Guideline and Investigation of Accumulator Parameters for a Novel Hybrid Architecture;JFPS International Journal of Fluid Power System;2022

3. Investigation of Accumulator Parameters for a Novel Hybrid Architecture;Journal of Robotics and Mechatronics;2020-10-20

4. Performance enhancement of hybrid hydraulic excavator using multiple hydro-pneumatic accumulators;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2020-03-10

5. Efficiency improvement and evaluation of electric hydraulic excavator with speed and displacement variable pump;Energy Conversion and Management;2017-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3