Interactions of Vortices of a Square Cylinder and a Rectangular Vortex Generator Under Couette–Poiseuille Flow

Author:

Maiti Dilip K.1,Bhatt Rajesh1

Affiliation:

1. Department of Mathematics, Birla Institute of Technology & Science, Pilani 333031, India e-mail:

Abstract

This study focuses on interactions of vortices generated by a family of eddy-promoting upstream rectangular cylinders (of different heights a* and widths b*) with the shear layers of a downstream square cylinder (of height A*) placed near a plane in an in-line tandem arrangement under the incidence of Couette–Poiseuille flow based nonuniform linear/nonlinear velocity profile. The dimensionless operational parameters are cylinders spacing distance S, ratio of heights r2=a*/A* (≤1), aspect ratio r1=b*/a* (≤1), Reynolds number Re (based on the velocity at height A* for Couette flow), ReU2 (based on the velocity at height 10A* for Couette–Poiseuille flow), and nondimensional pressure gradient P at the inlet. The governing equations are solved numerically through a pressure-correction-based iterative algorithm (SIMPLE) with the quadratic upwind interpolation for convective kinematics (QUICK) scheme for convective terms. The major issue of appearing multiple peaks in the spectrum of the fluctuating lift coefficient of the downstream cylinder is addressed and justified exhibiting the flow patterns. While considering the rectangular shape (for the upstream cylinder) and nonlinear velocity (at the inlet), the possibility of generating the unsteadiness in the steady wake flow of the downstream cylinder at a Re (based on height a*) less than the critical Re for the downstream cylinder is documented here. The dependence of flow characteristics of the downstream cylinder on the angle of incident linear velocity at specific S and r1 is also demonstrated here. It is observed that the discontinuous jump in the aerodynamic characteristics (due to a sudden change from one distinct flow pattern to the other in the critical spacing distance regime) is directly proportional to the height of the vortex generator. Increasing P under the same characteristic velocity causes the steady flow of cylinder(s) to convert to a periodic flow and reduces the critical spacing distance for the vortex generator.

Publisher

ASME International

Subject

Mechanical Engineering

Reference54 articles.

1. Thermal and Flow Analysis of a Heated Electronic Component;Int. J. Heat Mass Transfer,2001

2. Heat and Fluid Flow Across a Square Cylinder in the Two-Dimensional Laminar Flow Regime;Numer. Heat Transfer, Part A,2004

3. Numerical Study of Interactions of Vortices Generated by Vortex Generators and Their Effects on Heat Transfer Enhancement;Numer. Heat Transfer, Part A,2006

4. A Numerical Study of Vortex Shedding From Rectangles;J. Fluid Mech.,1982

5. Strouhal Numbers of Rectangular Cylinders;J. Fluid Mech.,1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3