Large Eddy Simulations of Supersonic Impinging Jets

Author:

Erwin James P.1,Sinha Neeraj1,Rodebaugh Gregory P.2

Affiliation:

1. e-mail:

2. e-mail:  Combustion Research and Flow Technology, Inc., Pipersville, PA 18947

Abstract

Supersonic impinging jet flow fields contain self-sustaining acoustic feedback features that create high levels of tonal noise. These types of flow fields are typically found with short takeoff and landing military aircraft as well as jet blast deflector operations on aircraft carrier decks. The United States Navy has a goal to reduce the noise generated by these impinging jet configurations and is investing in computational aeroacoustics to aid in the development of noise reduction concepts. In this paper, implicit large eddy simulation (LES) of impinging jet flow fields are coupled with a far-field acoustic transformation using the Ffowcs Williams and Hawkings (FW-H) equation method. The LES solves the noise generating regions of the flow and the FW-H transformation is used to predict the far-field noise. The noise prediction methodology is applied to a Mach 1.5 vertically impinging jet at a stand-off distance of five nozzle throat diameters. Both the LES and FW-H acoustic predictions compare favorably with experimental measurements. Time averaged and instantaneous flow fields are shown. A calculation performed previously at a stand-off distance of four nozzle throat diameters is revisited with adjustments to the methodology including a new grid, time integrator, and longer simulation runtime. The calculation exhibited various feedback loops which were not present before and can be attributed to an explicit time marching scheme. In addition, an instability analysis of the heated jets at both stand-off distances is performed. Tonal frequencies and instability modes are identified for the sample problems.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3