Characterization of the Nonaerated Flow Region in a Stepped Spillway by PIV

Author:

Amador António1,Sánchez-Juny Martí2,Dolz Josep2

Affiliation:

1. Hydraulic and Environmental Department., Technologic School of Barreiro, IPS, R. Stinville No. 14 Quimiparque, Barreiro 2830-144, Portugal

2. Hydraulic, Maritime and Environmental Department, Polythecnic University of Catalonia (UPC), C. Jordi Girona Campus Nord 1/3 Ed. D1, Barcelona 08034, Spain

Abstract

The development of the roller-compacted concrete (RCC) as a technique of constructing dams and the stepped surface that results from the construction procedure opened a renewed interest in stepped spillways. Previous research has focused on studying the air-water flow down the stepped chute with the objective of obtaining better design guidelines. The nonaerated flow region enlarges as the flow rate increases, and there is a lack of knowledge on the hydraulic performance of stepped spillways at high velocities that undermines its use in fear of cavitation damage. In the present, study the developing flow region in a stepped channel with a slope 1v:0.8h is characterized using a particle image velocimetry technique. An expression for the growth of the boundary layer thickness is proposed based on the streamwise distance from the channel crest and the roughness height. The local flow resistance coefficient is calculated by application of the von Kármán integral momentum equation. The shear strain, vorticity, and swirling strength maps obtained from the mean velocity gradient tensor are presented. Also, the fluctuating velocity field is assessed. The turbulent kinetic energy map indicates the region near the pseudobottom (imaginary line joining two adjacent step edges) as the most active in terms of Reynolds stresses. The turbulence was found to be very intense with maximum levels of turbulence intensity from 0.40 to 0.65 measured near the pseudobottom. Finally, the quadrant analysis of the velocity fluctuations suggests the presence of strong outflows of fluid from the cavities as well as inflows into the cavities. It is conjectured that the mass transfer/exchange between cavities and main stream, play an important role in the high levels of turbulent energy observed.

Publisher

ASME International

Subject

Mechanical Engineering

Reference27 articles.

1. Essery, I., and Horner, M., 1978, “The Hydraulic Design of Stepped Spillways,” CIRIA Report No. 33, London, 2nd ed.

2. Hydraulics of Stepped Chutes and Spillways

3. Interactions Between Cavity Flow and Main Stream Skimming Flow: an Experimental Study;Gonzalez;Can. J. Civ. Eng.

4. Two-Phase Flow Characteristics of Stepped Spillways;Boes;J. Hydraul. Eng.

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3