Affiliation:
1. Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
Abstract
Abstract
A three-dimensional thermo-mechanical finite element model (FEM) was developed and solved to study the feasibility of hybrid friction diffusion bonding (HFDB) technique for welding tube–tubesheet joints using Abaqus/explicit enviroment. Considering the process thermo-mechanical nature, temperature-dependent material properties and Johnson–Cook model were adopted. Two tube configurations were considered in the numerical study; zero projection (flush) and 3 mm projection (extended). For validation purposes, HFDB of tube–tubesheet was experimentally performed on a 19 mm (¾ in.) ASTM 179 cold-drawn carbon steel tube into ASTM A516-70 tubesheet, considering a flush tube configuration. The tool–workpiece temperature was measured using infrared camera, and produced joints were sectioned and examined under optical microscope. A good agreement was found between numericaly estimated temperatures and material deformation with experimentaly measured ones. According to the estimated results, spring back of tube was found to negatively affect the joint integrity. Also, contact stresses during processing phase were found less in the projected tube (extended) as compared to the flush one.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献