Cutting Tool Temperature Analysis in Heat-Pipe Assisted Composite Machining

Author:

Liu Jie1,Kevin Chou Y.1

Affiliation:

1. Mechanical Engineering Department, The University of Alabama, Tuscaloosa, AL 35487

Abstract

Machining of advanced materials, such as composite, encounters high cutting temperatures and rapid tool wear because of the abrasive nature of the reinforcement phases in the workpiece materials. Ultrahard coatings, such as chemical vapor deposition diamond, have been used for machining such advanced materials. Wear of diamond-coated tools is characterized by catastrophic coating failure, plausibly due to the high stress developed at the coating-substrate interface at high temperatures because of very different elastic moduli and thermal expansion coefficients. Temperature reductions, therefore, may delay the onset of the coating failure and offer tool life extension. In this study, a passive heat-dissipation device, the heat pipe, has been incorporated in composite machining. Though it is intuitive that heat transfer enhanced by the heat pipe may reduce tool temperatures, the heat pipe will likely increase heat partitioning into the tool at the rake face, and complicate the temperature reduction effectiveness. A combined experimental, analytical, and numerical approach was used to investigate the heat-pipe effects on cutting tool temperatures. A machining experiment was conducted and the heat-source characteristics were analyzed using cutting mechanics. With the heat sources as input, cutting tool temperatures in machining, without or with a heat pipe, were analyzed using finite element simulations. The simulations encompass a 3-D model of a cutting tool system and a 2-D chip model. The heat flux over the rake-face contact area was used in both models with an unknown heat partition coefficient, determined by matching the average temperature at the tool-chip contact from the two models. Cutting tool temperatures were also measured in machining using thermocouples. The simulation results agree reasonably with the experiment. The model was used to evaluate how the heat pipe modifies the heat transport in a cutting tool system. Applying heat-pipe cooling inevitably increases the heat flux into the tool because of the enhanced heat dissipation. However, the heat pipe is still able to reduce the tool-chip contact temperatures, though not dramatically at current settings. The parametric study using the finite element analysis (FEA) models shows that the cooling efficiency decreases as the cutting speed and feed increase, because of the increased heat flux and heat-source area. In addition, increasing the heat-pipe volume and decreasing the heat-pipe distance to the heat source enhances the heat-pipe cooling effectiveness.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference23 articles.

1. Machining a New Breed of Aluminum;Vaccari;Am. Mach.

2. Machining of an Aluminum∕SiC Composite Using Diamond Inserts;Andrewes;J. Mater. Process. Technol.

3. CVD Diamond Tool Performance in Composite Machining;Chou;Surf. Coat. Technol.

4. Properties and Uses of Amborite;Heath;IDR, Ind. Diamond Rev.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3